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Paysics 513, QUANTUM FIELD THEORY
Homework 4
Due Tuesday, 30th September 2003

JAcoB LEwIS BOURJAILY

1. We have defined the coherent state by the relation

3 al
[{mi}) = A exp { | jﬁ} 0).

For my own personal convenience throughout this solution, I will let

A= d3k nkaz .
(27)3 \/2E},
a) Lemma: [ap,e“ﬂ = \/%QA_
proof: First we note that from simple Taylor expansion (which is justified here),
Az A3
eAzl—l-A—i—?-i-?—i—...

Clearly a, commutes with 1 so we may write,
1 1
[aiﬁ? BA] = [ap“A} + §[GP7'A2] + Q[GPMA?)] +o

= lap, Al + 5 (fag ALA+ Alay, AD) + 51 (s AL + Alay, LA+ Alay, ALA) + ..

. A A3 AY
:[ap,A] <1+A+2+3'+4'+>7

= [ap, Ale™.
Note that the step labelled “*’ is unjustified. To allow the use of “*’ we must show that
[ap, A] is an invariant scalar and therefore commutes with all the A’s. This is shown by
direct calculation.

d3k‘ Nk
(27)3 \2E},

d3]€ Nk
(27)3 /2
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ViE,

This proves what was required for ‘*.” —2— is clearly a scalar because n and F, are real
2F P
P

numbers only. But by demonstrating the value of [a,, A] we can complete the proof of the
required lemma. Clearly,

[ap,eA] = [ap, Ale? = Z[)E e,

p

[aln A] =

[ap, al],
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It is clear from the definition of the commutator that apeA = [ap, eA] + eAap. Therefore it
is intuitively obvious, and also proven that

apl{m}) = Naye|0),
= /\/’([ap,eA] + eAap) |0},
= Nn7p|0> + Neta,|0),

V2E,

raplmed) = | {}). (L)
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b) We are to compute the normalization constant A/ so that ({ng}/{n}) = 1. T will proceed
by direct calculation.

L= ({m}{m}),

= N0l T VIR | (i ),

i adk__ng
= N*{0le” &% V2= [{ny.})
because we know that ay|{nx}) = \/EHWD So clearly

I a3k
1= |j\/’|2e @m)3 2By

2
1 I a3k Mk
2 (2m)3 2Ey, .

S N=e
c) We will find the expectation value of the field ¢(x) by direct calculation as before.

9@ = ({mHo@)H{m}) = mm/ﬁ,éE%wuwMMWx

({neHape™me}) + {mlabe™ P {me}) |

act with a, to the right act with a;(, to the left

:/ (F )

—/ dp o cos(p
(2m)3 E,

d) We will compute the expected particle number directly.

= OtV = e [ el

3p
/gﬁ(wa@%mm)
_ / dp
(2m)3 2B,
e) To compute the mean square dispersion, let us recall the theorem of elementary probability
theory that

(AN)?) =N2 - N".
We have already calculated N so it is trivial to note that
2 _ / Bkd®p men;,
(2m)S 4ELE,

Let us then calculate N2,
= (V) = (e [ s Lalanaa i)
_ / Ekd’p iy

(2m)6 2./E) E,

3 1.3 -
/iﬁygﬁﬁz«%m@@@+wmwwmwﬁ

_/ Bk n? +/d3kd3p Ul
) (2m)32E, (27)8 4ELE,
It is therefore quite easy to see that

(any) =¥ -7 - |

{ﬁk}\aka;r)\{ﬁk}>,

a3k L,%
(271’)3 2Ek '
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2. We are given the Lorentz commutation relations,
[JH | JP7] = i(g"P M7 — ghP JVT — P JHP 4 gho TV,
a) Given the generators of rotations and boosts defined by,

Li _ EGijk:ij KZ _ JOi
9 ;

we are to explicitly calculate all the commutation relations. We are given trivially that
[Li, L] = ik L,
Let us begin with the K’s. By direct calculation,
[KZ’KJ} [JO’L JO]] _ Z( OZJO] OOJij o gijJOO +g()j[]i0)7

= —iJ,

= 27 LF.
Likewise, we can directly compute the commutator between the L and K’s. This also will
follow by direct calculation.

[L’L’K]] _ §€lk[Jllk’JOj]7

—_ §€zlki(glOJ2J _ gzOJlg _gljJZO _|_g7.leO)7
_ ’LG”kJOk
=ik Kk,

We were also to show that the operators

) 1 . ) ) 1 . )
J_ﬁ_:i(LW—iKl) Jl_zi(Ll—iKl),
could be seen to satisfy the commutation relations of angular momentum. First let us
compute,
1 . _
[‘]+7 ‘]—} 1 [(Lz + ZKl) (L] - ZKZ)] ;
1 o
=7 ([Ll LI +i[K* L] —i[L', K9] + [KZ,KJ]) ,
=0.

In the last line it was clear that I used the commutator [L?, K7] derived above. The next
two calculations are very similar and there is a lot of ‘justification’ algebra in each step.
There is essentially no way for me to include all of the details of every step, but each can be
verified (e.g. z[K‘ LI = —i[l7, K" = (—i)ie/* K* = —e'lk K*__etc). They are as follows:

T4 T = 5 (L4 iKY (D +iK))
7 (D) il K D) L K9] L K — (K K))
= } (Z‘eljkLk _ Giijk _ eiijk + ’L'EijkLk)
4 )
— Ze”kQ(Lk —l—ZKk) _ ’Lewkjk
Likewise,

[Ji,J7] = i (L' —iK"), (L) —iK7)],
1

([L', 7] —i[K*, L7] —i[L*, K’] +4i[L', K'] — [K', K7]),

MH%

(ZezjkLk _|_€iijk T eijk‘Kk +Z€1jkLk)7
1 ..
= Zeljk2(Lk —iK*) =ik gk,
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b) Let us consider first the (0, %) representation. For this representation we will need to satisfy
i

) 1 . ) ) 1 .
Jy= (L ik =0 U= S (L i) = T

This is obtained by taking L = %l and K' = % The transformation law then of the (0, 1)
representation is
—iwy,, JHY
(P(O,%) — € op @(0’%),
O LB K
— O LK )‘I’(o,%w

_iolel | BIKI
3

= * 0.
The calculation for the (1,0) representation is very similar. Taking L = % and K' = f%i,
we get
. 1 . , i , 1 .
er:§(Lz+iK1):% JL= (L —ik*) =o.

Then the transformation law of the representation is
—iw,, TP
(1) — e T D
_ —i(0"L'+BI K
= IR ),

_iolet  pIKI
= 2 2
¢ (1.0

Comparing these transformation laws with Peskin and Schroeder’s (3.37), we see that
YL = P10 VR =P, 1)
3. a) We are given that T, is a representation of some Lie group. This means that
[T, Ty) = if**T..

by definition. Allow me to take the complex conjugate of both sides. Note that [Ty, Tp] =
[(=T%), (=Tp)] in general and recall that f*¢ are real.

[To, Th]" = (ifabcTC)*v
[T;’ Tb*] = _ifabCTc*v
ST, (ST = if e (=T7).
So by the definition of a representation, it is clear that (—77) is also a representation of the
algebra.

b) As before, we are given that T, is a representation of some Lie group. We will take the
Hermitian adjoint of both sides.

[To, To)" = (if**°T.)T,
(T.Tp)" = (LT,)" = —if*°T],
TiTS —TIT] = —ifher,
(T, i) = —ifeeT,
[T T = i,
So by the definition of a representation, it is clear that 7./ is a representation of the algebra.

¢) We define the spinor representation of SU(2) by T, = %a so that

1/0 1 1/0 —i 11 0
h 2(1 0) & 2<i 0) T3:2(0 —1)'

We will consider the matrix S = io?. Clearly S is unitary because (ic2?)(ic?)’ = 1. Now,
one could proceed by direct calculation to demonstrate that

T * T * T *
STlS ——( 1 0 )__Tl STQS _<’L 0 )——22 SZSS —( 0 1)——13.

This clearly demonstrates that the representation —T7 is equivalent to that of T,.
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d) From our definitions of our representation of SO(3,1) using J% and J, it is clear that

(J)t=JL.

This could be expressed as if (1,0)" = (0, 3), or, rather LT = R. So what we must ask
ourselves is, does there exist a unitary matrix S such that

SLST=L  but SKSt=—-K?

If there did exist such a unitary transformation, then we could conclude that L and R
are equivalent representations. However, this is not possible in our SO(3, 1) representation
because both L and K are represented strictly by the Pauli spin matrices so that iK = L =
Z. It is therefore clear that there cannot exist a transformation that will change the sign
of K yet leave L alone. So the representations are inequivalent.
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