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Physics 513, Quantum Field Theory
Homework 4

Due Tuesday, 30th September 2003

Jacob Lewis Bourjaily

1. We have defined the coherent state by the relation

|{ηk}〉 ≡ N exp

{∫
d3k

(2π)3
ηka†k√
2Ek

}
|0〉.

For my own personal convenience throughout this solution, I will let

A ≡
∫

d3k

(2π)3
ηka†k√
2Ek

.

a) Lemma:
[
ap, e

A]
= ηp√

2Ep

eA.

proof: First we note that from simple Taylor expansion (which is justified here),

eA = 1 +A+
A2

2
+
A3

3!
+ . . .

Clearly ap commutes with 1 so we may write,
[
ap, e

A]
= [ap,A] +

1
2
[ap,A2] +

1
3!

[ap,A3] + . . . ,

= [ap,A] +
1
2

([ap,A]A+A[ap,A]) +
1
3!

(
[ap,A]A2 +A[ap,A]A+A[ap,A]A)

+ . . . ,

∗= [ap,A]
(

1 +A+
A2

2
+
A3

3!
+
A4

4!
+ . . .

)
,

= [ap,A]eA.

Note that the step labelled ‘*’ is unjustified. To allow the use of ‘*’ we must show that
[ap,A] is an invariant scalar and therefore commutes with all the A’s. This is shown by
direct calculation.

[ap,A] =
∫

d3k

(2π)3
ηk√
2Ek

[ap, a
†
k],

=
∫

d3k

(2π)3
ηk√
2Ek

(2π)3δ(3)(~p− ~k),

=
ηp√
2Ep

.

This proves what was required for ‘*.’ ηp√
2Ep

is clearly a scalar because η and Ep are real

numbers only. But by demonstrating the value of [ap,A] we can complete the proof of the
required lemma. Clearly,

[
ap, e

A]
= [ap,A]eA =

ηp√
2Ep

eA.

‘óπερ ’έδει δεÄιξαι
It is clear from the definition of the commutator that ape

A =
[
ap, e

A]
+ eAap. Therefore it

is intuitively obvious, and also proven that

ap|{ηk}〉 = Nape
A|0〉,

= N ([
ap, e

A]
+ eAap

) |0〉,
= N ηp√

2Ep

|0〉+N eAap|0〉,

∴ ap|{ηk}〉 =
ηp√
2Ep

ap|{ηk}〉. (1.1)

‘óπερ ’έδει δεÄιξαι
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b) We are to compute the normalization constant N so that 〈{ηk}|{ηk}〉 = 1. I will proceed
by direct calculation.

1 = 〈{ηk}|{ηk}〉,

= N ∗〈0|e
∫

d3k
(2π)3

ηkak√
2Ek |{ηk}〉,

= N ∗〈0|e
∫

d3k
(2π)3

ηk√
2Ek |{ηk}〉

because we know that ak|{ηk}〉 = ηk√
2Ek

|{ηk}〉. So clearly

1 = |N |2e
∫

d3k
(2π)3

η2
k

2Ek ,

∴ N = e
− 1

2

∫
d3k

(2π)3
η2

k
2Ek .

c) We will find the expectation value of the field φ(x) by direct calculation as before.

φ(x) = 〈{ηk}|φ(x)|{ηk}〉 = 〈{ηk}|
∫

d3p

(2π)3
1√
2Ep

(
ape

i~p·~x + a†pe
−i~p·~x)|{ηk}〉,

=
∫

d3p

(2π)3
1√
2Ep


 〈{ηk}|ape

i~p·~x|{ηk}〉︸ ︷︷ ︸
act with ap to the right

+ 〈{ηk}|a†pe−i~p·~x|{ηk}〉︸ ︷︷ ︸
act with a†p to the left


,

=
∫

d3p

(2π)3
1√
2Ep

(
ηp√
2Ep

ei~p·~x +
ηp√
2Ep

e−i~p·~x
)

,

=
∫

d3p

(2π)3
ηp

Ep
cos(~p · ~x).

d) We will compute the expected particle number directly.

N = 〈{ηk}|N |{ηk}〉 = 〈{ηk}|
∫

d3p

(2π)3
a†pap|{ηk}〉,

=
∫

d3p

(2π)3

(
〈{ηk}|a†p←−−−−

ap|{ηk−−−−→}〉
)

,

=
∫

d3p

(2π)3
η2

p

2Ep
.

e) To compute the mean square dispersion, let us recall the theorem of elementary probability
theory that

〈(∆N)2〉 = N2 −N
2
.

We have already calculated N so it is trivial to note that

N
2

=
∫

d3kd3p

(2π)6
η2

kη2
p

4EkEp
.

Let us then calculate N2.

N2 = 〈{ηk}|N2|{ηk}〉 = 〈{ηk}|
∫

d3kd3p

(2π)6
a†kaka†pap|{ηk}〉,

=
∫

d3kd3p

(2π)6
ηkηp

2
√

EkEp

〈{ηk}|aka†p|{ηk}〉,

=
∫

d3kd3p

(2π)6
ηkηp

2
√

EkEp

(
(2π)3δ(3)(~k − ~p) + 〈{ηk}|a†pak|{ηk}〉

)
,

=
∫

d3k

(2π)3
η2

k

2Ek
+

∫
d3kd3p

(2π)6
η2

kη2
p

4EkEp
.

It is therefore quite easy to see that

〈(∆N)2〉 = N2 −N
2

=
∫

d3k

(2π)3
η2

k

2Ek
.
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2. We are given the Lorentz commutation relations,

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ).

a) Given the generators of rotations and boosts defined by,

Li =
1
2
εijkJjk Ki = J0i,

we are to explicitly calculate all the commutation relations. We are given trivially that

[Li, Lj ] = iεijkLk.

Let us begin with the K’s. By direct calculation,

[Ki,Kj ] = [J0i, J0j ] = i(g0iJ0j − g00J ij − gijJ00 + g0jJ i0),

= −iJ ij ;

= −2iεijkLk.

Likewise, we can directly compute the commutator between the L and K’s. This also will
follow by direct calculation.

[Li,Kj ] =
1
2
εlk[J ilk, J0j ],

=
1
2
εilki(gl0J ij − gi0J lj − gljJ i0 + gijJ l0),

= iεijkJ0k;

= iεijkKk.

We were also to show that the operators

J i
+ =

1
2
(Li + iKi) J i

− =
1
2
(Li − iKi),

could be seen to satisfy the commutation relations of angular momentum. First let us
compute,

[J+, J−] =
1
4

[
(Li + iKi), (Lj − iKi)

]
,

=
1
4

(
[Li, Lj ] + i[Ki, Lj ]− i[Li,Kj ] + [Ki, Kj ]

)
,

= 0.

In the last line it was clear that I used the commutator [Li,Kj ] derived above. The next
two calculations are very similar and there is a lot of ‘justification’ algebra in each step.
There is essentially no way for me to include all of the details of every step, but each can be
verified (e.g. i[Ki, Lj ] = −i[Lj , Ki] = (−i)iεjikKk = −εijkKk...etc). They are as follows:

[J i
+, Jj

+] =
1
4

[
(Li + iKi), (Lj + iKj)

]
,

=
1
4

(
[Li, Lj ] + i[Ki, Lj ] + i[Li,Kj ] + i[Li, Ki]− [Ki,Kj ]

)
,

=
1
4

(
iεijkLk − εijkKk − εijkKk + iεijkLk

)
,

= iεijk 1
2
(Lk + iKk) = iεijkJk

+.

Likewise,

[J i
−, Jj

−] =
1
4

[
(Li − iKi), (Lj − iKj)

]
,

=
1
4

(
[Li, Lj ]− i[Ki, Lj ]− i[Li,Kj ] + i[Li, Ki]− [Ki,Kj ]

)
,

=
1
4

(
iεijkLk + εijkKk + εijkKk + iεijkLk

)
,

= iεijk 1
2
(Lk − iKk) = iεijkJk

−.

‘óπερ ’έδει δεÄιξαι
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b) Let us consider first the (0, 1
2 ) representation. For this representation we will need to satisfy

J i
+ =

1
2
(Li + iKi) = 0 J i

− =
1
2
(Li − iKk) =

σi

2
.

This is obtained by taking Li = σi

2 and Ki = iσi

2 . The transformation law then of the (0, 1
2 )

representation is

Φ(0, 1
2 ) −→ e−iωµνJµν

Φ(0, 1
2 ),

= e−i(θiLi+βjKj)Φ(0, 1
2 ),

= e−
iθiσi

2 + βjKj

2 Φ(0, 1
2 ).

The calculation for the ( 1
2 , 0) representation is very similar. Taking Li = σi

2 and Ki = −σi

2 ,
we get

J i
+ =

1
2
(Li + iKi) =

σi

2
J i
− =

1
2
(Li − iKk) = 0.

Then the transformation law of the representation is

Φ( 1
2 ,0) −→ e−iωµνJµν

Φ( 1
2 ,0),

= e−i(θiLi+βjKj)Φ( 1
2 ,0),

= e−
iθiσi

2 − βjKj

2 Φ( 1
2 ,0).

Comparing these transformation laws with Peskin and Schroeder’s (3.37), we see that

ψL = Φ( 1
2 ,0) ψR = Φ(0, 1

2 ).

3. a) We are given that Ta is a representation of some Lie group. This means that

[Ta, Tb] = ifabcTc

by definition. Allow me to take the complex conjugate of both sides. Note that [Ta, Tb] =
[(−Ta), (−Tb)] in general and recall that fabc are real.

[Ta, Tb]∗ = (ifabcTc)∗,

[T ∗a , T ∗b ] = −ifabcT ∗c ,

∴ [(−T ∗a ), (−T ∗b )] = ifabc(−T ∗c ).

So by the definition of a representation, it is clear that (−T ∗a ) is also a representation of the
algebra.

b) As before, we are given that Ta is a representation of some Lie group. We will take the
Hermitian adjoint of both sides.

[Ta, Tb]† = (ifabcTc)†,

(TaTb)† − (TbTa)† = −ifabcT †c ,

T †b T †a − T †aT †b = −ifabcT †c ,

[T †b , T †a ] = −ifabcT †c ,

∴ [T †a , T †b ] = ifabcT †c .

So by the definition of a representation, it is clear that T †a is a representation of the algebra.
c) We define the spinor representation of SU(2) by Ta = σa

2 so that

T1 ≡ 1
2

(
0 1
1 0

)
T2 ≡ 1

2

(
0 −i
i 0

)
T3 ≡ 1

2

(
1 0
0 −1

)
.

We will consider the matrix S = iσ2. Clearly S is unitary because (iσ2)(iσ2)† = 1. Now,
one could proceed by direct calculation to demonstrate that

ST1S
† =

1
2

(
0 −1
−1 0

)
= −T ∗1 ST2S

† =
1
2

(
0 −i
i 0

)
= −T ∗2 ST3S

† =
1
2

( −1 0
0 1

)
= −T ∗3 .

This clearly demonstrates that the representation −T ∗a is equivalent to that of Ta.
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d) From our definitions of our representation of SO(3, 1) using J i
+ and J i

−, it is clear that

(J i
+)† = J i

−.

This could be expressed as if ( 1
2 , 0)† = (0, 1

2 ), or, rather L† = R. So what we must ask
ourselves is, does there exist a unitary matrix S such that

SLS† = L but SKS† = −K ?

If there did exist such a unitary transformation, then we could conclude that L and R
are equivalent representations. However, this is not possible in our SO(3, 1) representation
because both L and K are represented strictly by the Pauli spin matrices so that iK = L =
σ
2 . It is therefore clear that there cannot exist a transformation that will change the sign
of K yet leave L alone. So the representations are inequivalent.

‘óπερ ’έδει δεÄιξαι




